МИНИСТЕРСТВО ОБРАЗОВАНИЯ ПЕНЗЕНСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПЕНЗЕНСКОЙ ОБЛАСТИ «МНОГОПРОФИЛЬНАЯ ГИМНАЗИЯ №13»

PACCMOTPEHO

На заседании кафедры

Протокол № 1 от 28.08.2025г.

СОГЛАСОВАНО

Педагогическим советом

ГАОУ ПО «Многопрофильная гимназия № 13» Протокол № 12 от 29.08.2025г.

УТВЕРЖДАЮ

Директор ГАОУ ПО «Многопрофильная гимназия № 13»

Паньженский Е.В. Приказ №158 от 01.09.2025 г.

РАБОЧАЯ ПРОГРАММА

учебного курса «Химия: учебная практика»

111 класс

Пояснительная записка

Структура документа:

Рабочая программа включает в себя:

- 1. Пояснительную записку.
- 2. Содержание программы.
- 3. Тематическое планирование.
- 4. Перечень компонентов учебно-методического комплекса.
- 5. Единые требования к уровню подготовки учащихся.
- 6. Сведения о контрольно-измерительных материалах.
- 7. Контрольно-измерительные материалы.

Для успешного решения задач, поставленных перед школой, необходимо, с одной стороны, обеспечить прочное овладение школьниками программным объёмом знаний и умений и, с другой — создать условия для углублённого изучения школьного курса химии для учащихся, проявляющих склонность и интерес к химии.

Традиционные курсы органической химии имеют, как правило, описательный, фактологический характер и ориентированы в большей мере на запоминание, чем понимание материала.

Предлагаемый курс предусматривает более глубокое изучение теоретических основ органической химии, которое поможет учащимся понять зависимость свойств и реакционной способности соединений от их строения, позволит научиться прогнозировать химическое поведение неизвестного вещества сложного строения, даст возможность не просто выучить химические реакции, но объяснить их механизм, предвидеть направление и условия протекания реакций.

Программа преследует также цель вооружить учащихся правильными представлениями о многообразии и сложности материального мира, высшие формы развития которого построены из органических соединений.

В отличие от традиционного курса предлагаемая программа отводит значительное количество часов для введения в теоретическую органическую химию, которое послужит надлежащим фундаментом для осознанного усвоения учащимися последующих разделов программы.

Практическая часть также расширена и предусматривает осуществление синтезов органических веществ (с учётом очистки и определения практического выхода), проведение функционального анализа отдельных представителей органических соединений.

Цели и задачи курса

Специализированный курс по органической химии рассчитан на школьников, интересующихся химией, и абитуриентов. Он не заменяет систематический курс органической химии, а дополняет его.

Главное назначение курса:

- углубить, систематизировать и обобщить знания учащихся по органической химии
- развить умения наблюдать и объяснять химические явления, выдвигать гипотезы, намечать план их проверки;
- совершенствовать практические умения по постановке химического эксперимента для получения новых знаний о свойствах веществ, аргументации выводов;
 - развивать гуманистических черт личности формировать творческие способности;
- формировать отношение к химии как возможному полю практической деятельности в будущем;
 - подготовит учащихся к вступительным экзаменам в высшие учебные завдения.

Межпредметные связи.

Программа построена с учётом реализации медпредметных связей с курсом физики, где изучаются основные сведения о строении атомов; биологии, где дается знакомство с химической организации клетки и процессами обмена веществ, с курсом экологии, где изучаются проблем возникающие для живых организмах, отдельных экосистем и биосферы в целом.

Ведущие понятия курса.

Более глубокое рассмотрение вопросов электронного и пространственного строения веществ, их реакционной способности предусматривает введение новых понятий об электронных и пространственных эффектах, их влияние на протекание реакций; конформация, оптической изомерии, таутометрии; переходом состояния.

Формы и методы работы.

Формы работы: лекционные занятия, семинары, практикумы, зачёты, контроль и систематизация знаний с использованием ЭВМ.

Методы изучения нового материала.

- 1) Словесные: лекция, объяснение, рассказ, беседы, выступление специалистов, доклады учащихся;
- 2) Словесно наглядные: демонстрация опытов, экранных пособий, коллекций, макетов, моделей таблиц, объяснения на экскурсии;
- 3) Словесно наглядно практические: выполнение практических и экспериментальных работ исследовательского характера.

Методы совершенствования взглядов и умений.

- 1) Словесные: ведение записей в тетрадях, упражнения, решение расчётных задач, работа со справочником и дополнительной литературой, работа с программным текстом, составление задач, написание рефератов, подготовка сообщений об учёных химиках, описание производств.
- 2) Словесно наглядные: лабораторные опыты, объяснение демонстрационных опытов, наблюдение за химическими процессами на экскурсии и их объяснение, работа с технологическими схемами, работа с раздаточным материалом.
- 3) Словесно наглядно практические: лабораторные практикумы, моделирование, изготовление наглялных пособий.

Методика контроля и учёта знаний и умений.

- 1) Словесные: фронтальная, проверочная беседа, устный индивидуальный опрос, текстовая проверка с применением перфокарт, проверочные и контрольные работы, выступление учащихся на семинарах, конференциях, выступления с обзором литературы, зачёты;
- 2) Словесно наглядные: решение задач экспериментальным методом, графическая проверка знаний;
- 3) Словесно наглядно практические: решение задач экспериментальным методом, моделирование, участие в проведении итогового мероприятия.

Содержание программы

(2 ч. в неделю, всего 66 ч.)

Тема 1. Теоретические основы органической химии 8ч.

Теория строения соединений А.М.Бутлерова. Современные представления об электронном и пространственном строении органических соединений. Виды изомерии: структурная, пространственная, оптическая. Основы номенклатуры органических соединений: тривиальная, рациональная, заместительная. Типы органических реакций. Понятие о нуклеофильных и электрофильных реагентах. Устойчивость интермедиантов (радикалов, карбокатионов, карбоанионов). Принципы наименьшего изменения строения при химических реакциях. Понятие о переходном состоянии.

Практикум. Расчётные задачи на нахождение молекулярной формулы вещества по массовой доле элементов и их плотности.

Тема 2. Углеводороды 16 ч.

Алканы: особенности строения, гомологический ряд, номенклатура, изомерия. Химические свойства алкенов. Радикальные реакции замещения. Получение и применение алканов. Индукционный эффект. Особенности хлорирования и бромирования пропана. Свойства галогенопроизводных: реакция с активными металлами, водой, щелочами. Механизм реакции нуклеофильного замещения. Реакционная способность галогенопроизводных.

Циклоалкканы (циклопарафины): строение, изомерия. Причины, влияющие на устойчивость циклов. Зависимость свойств от строения циклов. Пространственное строение циклов. Свойства, получение и применение циклоалканов.

Алкены: Строение, гомологический ряд, изомерия и номенклатура. Свойства алкенов. Реакции электрофильного присоединения. Правило Марковникова и его теоретическое обоснование с учётом распределения электронной плотности в нереагирующей молекуле и с учётом устойчивости карбокатионов. Радикальный и ионный механизмы реакции полимеризации. Сополимеризация. Галогенопроизводные алкенов. Получение и применение.

Алкины: строение, гомологический ряд, изомерия и номенклатура. Свойства, получение и применение алкинов. Проявление ацетиленом слабых кислотных свойств. Понятие о кислотности по Бренстеду. Реакции олиго- и полимеризации, окислительной поликонденсации. Карбин. Получение винилхлорида в промышленности.

Алкадиены. Сопряжение и его влияние на реакционную способность соединений. Ароматические углеводороды. Бензол: строение, получение, применение. Свойства бензола: реакции нитрирования, галогенирования, сульфирования, алкилирования. Механизм SE. Ориентация в бензольном ядре. Производные бензола: толуол, стирол. Изомерия положения двузамещённых производных бензола. Стирол как важнейшая производная бензола. Строение, свойства и получение стирола из этилбензола. Свободнорадикальный механизм полимеризации стирола. Полистирол.

Генетическая связь углеводородов.

Практикум. Получение метана. Определение относительной плотности метана по воздуху. Определение относительно плотности метана по воздуху. Определение качественного состава метана по продуктам горения. Отношение предельных углеводородов к растворам перманганата калия и бромной воды. Получение ацетилена карбидным способом и изучение его свойств: горение, взаимодействие с бромной водой и раствором перманганата калия. Синтез 1,2 — дибромэтана. Изучение свойств бензола, его очистка, определение практического выхода. Бромирование бензола (влияние катализатора). Окисление толуола.

Тема 3. Функциональные производные углеводородов 26ч.

Классификация спиртов. Предельные одноатомные спирты. Многоатомные спирты на примере этиленгликоля и глицерина. Фенолы: строение, свойства, получение и применение. Сравнение химических свойств спиртов и фенолов с позиций взаимного влияния атомов в молекулах. Механизм реакции нуклеофильного замещения у спиртовую Орто-, пара-ориентирующее действие гидроксильной группы фенола. Нитрирование фенола. Получение фенола кумольным способом. Понятие о двухатомных фенолах и их применение. Ядохимикаты.

Альдегиды: строение, номенклатура, изомерия, получение и применение. Кетоны: строение, номенклатура, изомерия, получение и применение. Сходство и различие альдегидов и кетонов. Реакции нуклеофильного присоединения полуацетали и ацетали. Полимеризация альдегидов. Полиформальдегид. Поликонденсация формальдегида с

фенолом. Фенолформальдегидная пластмасса. Понятие о непредельных и ароматических альдегидах. Ацетон, его применение. Способы получения кетонов.

Классификация и номенклатура карбоновых кислот. Зависимость кислотности от строения карбоксильной группы и природы радикала. Предельные одноосновные карбоновые кислоты: изомерия, свойства, получение и применение. Двухосновные карбоновые кислоты (щавелевая, малоновая). Ароматические кислоты (бензойная, фталева), их применение. Получение ароматических кислот. Поликонденсация терефталевой кислоты и этиленгликоля. Лавсан. Оксикислоты, их свойства и применение. Функциональные производные кислот: ангидриды и хлорангидриды кислот, сложные эфиры. Механизм реакции этерификации Жиры.

Углеводы. Строение и свойства моносахаридов. Гексозы и пентозы. Стереоизомерия гексоз. Таутомерия. Строение и свойства олигосахаридов и полисахаридов. **Практикум.** Количественный опыт выделения водорода из этилового спирта. Сравнение спиртов в гомологическом ряду (растворимость в воде, горение, взаимодействие с натрием). Свойства фенола. Получение хинона. Деполяризация параформа. Отношение олеиновой кислоты к бромной воде и раствору перманганата калия. Гидролиз сахарозы. Взаимодействие сахарозы с гидроксидами металлов. Ферментативный гидролиз крахмала. Синтез пентаапетилглюкозы.

Тема 4. Гетерофункциональные соединения 6 ч.

Амины: классификация, номенклатура, изомерия, химические свойства, получение и применение. Аминокислоты – амфотерные органические вещества. Белки – биологические полимеры. **Практикум.** Аминокислоты. Решение экспериментальных задач.

Тема 5. Гетероциклические соединения 6 ч.

Аминокислоты: состав, строение, свойства, получение и применение. Белки — природеные полимеры. Шестичленные гетероциклы: пиридин, пиримидин. Пиримидиновые и пуриновые основания. Нуклеиновые кислоты.

Тема 6. Органическая химия в жизни человека 4 ч.

Промышленное производство органических соединений на примере метанола, этанола, уксусной кислоты. Полимеры и полимерные материалы: пластмассы, синтетические каучуки, синтетические волокна, краски, лаки, клеи. **Практикум.** Полимеры

Тематическое планирование

№	Тема занятия	Примечание	Д/з			
1	2	3	4			
<i>Тема</i> 1. Теоретические основы органической химии (8 ч)						
1-2	Теория химического строения А.М. Бутлерова. Решение тестов.	Практикум (1ч,ТБ)	П. § 1.1 -1.4 К. § 3			

			A. § 1			
3-4	Особенности строения органических соединений. Их классификация. Решение тестов.		II. § 1.5 – 1.7 K. § 4 A. § 2-6, 10			
5-6	Химические реакции с участием органических веществ. Их классификация.		П. § 1.8 К. § 7-9			
7-8	Методы исследования органических соединений.	Практикум (1ч, ТБ)	A. § 6 K. § 6			
Тема 2. Углеводороды (16 ч)						
9-10	Алканы: гомологический ряд, номенклатура, изомерия, свойства, применение, получение. Решение задач.	Практикум (1ч, ТБ) Тест 1	П. § 2.1-2.5 К. § 10-12 А. § 1.1-1.6			
11-12	Решение задач по теме: «Циклоалканы (циклопарафины): строение, номенклатура, изомерия, свойства, применение, получение.»	Практикум (1ч, ТБ)	П. § 2.1-2.5 К. § 13 А. § 15.1-15.2			
13-14	Непредельные углеводороды ряда этилена (олефины). Решение задач.	Практикум (1ч, ТБ)	П. § 2.6-2.8; § 2,10-2.11 К. § 14-15			
15-16	Диеновые углеводороды (алкадиены, или диолефины)	Практикум (1ч, ТБ)	П. § 2.9, 2.11 К. § 16			
17-18	Непредельные углеводороды ряда ацетилена (алкины). Решение задач.	Практикум (1ч, ТБ)	K. § 17			
19-20	Решение тестов по теме: «Ароматические углеводороды (арены)».	Практикум (1ч, ТБ)	П. § 2.12-2.15 К. § 18-19			
21-22	Природные источники углеводородов и их переработка. Решение тестов.	Практикум (1ч, ТБ)	П. § 2.16 К. § 53-55			
23-24	Решение задач по теме: «Генетическая связь углеводородов.»	Практикум (1ч, ТБ)	П. § 4.9 К. § 20			
	Тема 3. Функциональные произв	водные углеводородо	в (26 ч)			
25-26	Галогенопроизводные углеводородов: классификация, строение, номенклатура, изомерия, свойства. Решение тестов.	Практикум (1ч, ТБ) Тест 2	П. § 3.1-3.3,3.4			
27-28	Решение задач по теме: «Одноатомные предельные спирты (гомологический ряд, номенклатура, изомерия, физические, химические свойства, получение, применение)»	Практикум (1ч, ТБ)	П. § 4.1-4.2 К. § 21-23			
29-30	Многоатомные спирты. Спирты и здоровье.	Практикум (2ч, ТБ)	K. § 24			
31-32	Фенолы и ароматические спирты. Решение тестов.		K. § 25			
33-34	Решение задач по теме: «Альдегиды и кетоны (классификация, гомологические ряды, номенклатура, изомерия, свойства, получение, применение).»	Практикум (1ч, ТБ) Тест 3	К. §26-29 П. § 4.4-4.5			
35-36	Непредельные и ароматические альдегиды и кетоны.		A. § 9.6			
37-38	Предельные одноосновные карбоновые кислоты. Решение задач.	Практикум (1ч, ТБ)	К. § 30-31			

		Тест 4					
39-40	Непредельные одноосновные карбоновые	Практикум (1ч, ТБ)	П. § 4.6				
	кислоты. Решение тестов.		К. § 32				
41-42	Решение задач по теме: «Двухосновные	Практикум (1ч.	П. § 4.6				
	карбоновые кислоты. Высшие	TB)					
	карбоновые кислоты. Мыла.»						
43-44	Классификация эфиров. Простые эфиры.	Практикум (1ч, ТБ)	A. § 10.1- 10.2				
		Тест 5					
45-46	Сложные эфиры. Решение тестов.	Практикум (1ч, ТБ)	K. § 33				
47-48	Жиры. Воски.	Практикум (1ч, ТБ)	П. § 4.8				
			K. § 38-39				
			A. § 10.5				
49-50	Решение задач по теме:	Практикум (1ч, ТБ)	П. § 5.1, 5.2				
	«Азотосодержащие органические		К. § 34-36				
	соединения (нитросоединения, амины,						
	алеиды кислот).»						
<i>Тема</i> 4. Гетерофункциональные соединения (6 ч)							
51-52	Аминокислоты: состав, строение,	Практикум (2ч, ТБ)	П. § 6.1-6.3				
	свойства, получение и применение. Белки		K. § 45-50				
	– природные полимеры.						
53-54	Углеводы: общие сведения.	Практикум (1ч, ТБ)	П. § 6.4,6.5				
	Классификация углеводов.		K. § 40-41				
	Моносахариды. Решение тестов.						
55-56	Ди- и полисахариды: крахмал и	Практикум (1ч, ТБ)	П. § 6.6				
	клетчатка. Древесина и продукты её		K. § 42-44				
	переработки.		A. § 14.3-14.4				
	<i>Тема</i> 5. Гетероциклическ	сие соединения (6 ч)					
57-58	Решение задач по теме: «Шестичленные	Тест 7	П. § 7.2				
	гетероциклы: пиридин, пиримидин.»		K. § 37				
59-60	Пиримидиновые и пуриновые основания.		П. § 7.2				
			K. § 37				
61-62	Нуклеиновые кислоты. Решение задач.		П. § 7.3				
			K. § 51-52				
	<i>Тема</i> 6. Органическая химия						
63-64	Промышленное производство	Тест 8	П. § 4.3-4.7				
	органических соединений на примере		К. § 56-58				
	метанола, этанола, уксусной кислоты.						
	Решение тестов.						
65-66	Полимеры и полимерные материалы:	Практикум (1ч, ТБ)					
	пластмассы, синтетические каучуки,						
	синтетические волокна, краски, лаки,						
	клеи. Решение тестов.						
67-68	Итоговое обобщение						

Литература для учащихся

- 1. Зубарян С.Э. и др. Органическая химия. Учебник для медицинских училищ. –М.: Медицина. 1989.
- 2. Кузьменко Н.Е. и др. Химия. Пособие для школьников старших классов и поступающих в вузы. –М.: Дрофа. 1995.
- 3. Потапов В.М., Чертков И.Н. Проверь свои знания по органической химии. –М.: Просвещение. 1979.
- 4. Потапов В.М., Чертков И.Н. Строение и свойства органических веществ. –М.: Просвещение. 1984.
- 5. Сидорова Е.Ф., Пузарина Л.С. Механизмы органических реакций. –Пенза, 1996.
- 6. Сидорова Е.Ф., Пузарина Л.С. Основы номенклатуры органических соединений. Пенза, 1996.
- 7. Хомченко Г.П. Химия для поступающих в вузы. –М.: Высшая школа, 1994.

Литература для учителя

- 1. Гото Т. И др. Современная органическая химия в вопросах и ответах. –М.: Мир, 1971.
- 2. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия. Учебник для вузов. –М.: Высшая школа, 1973.
- 3. Потапов В.М. Органическая химия. –М.: Просвещение, 1983.
- 4. Ремсден Э.Н. Начала современной химии. –Л.: Химия, 1989.
- 5. Сидорова Е.Ф. Изучение в школе новых разделов органической химии. Пенза, ИУУ, 1987.
- 6. Сидорова Е.Ф. Химия и биохимия углеводов. –Пенза, 1992.
- 7. Сидорова Е.Ф., Таранова Н.И. Методическая разработка по органической химии. –Пенза, 1990.
- 8. Тейлор Г. Основы органической химии. –М.: Мир, 1989.

Единые требования к уровню подготовки учащихся

Требования к усвоению теоретического материала.

Знать историю теоретических воззрений (теорию радикалов, теорию типов, работы Франкленда, Кекуле, Купера), электронные и пространственные эффекты, их влияние на протекание реакций, конформационную и оптическую изомерию, таутомерию, виды связей (сопряжение и другие).

Знать понятия химии высокомолекулярных веществ: сополимеризация, окислительная поликонденсация, деполимеризация.

Уметь разъяснять на примерах причины многообразия органических веществ, материальное единство органических и неорганических веществ, причинно-следственную значимость между составом, строением и свойствами веществ, развитие познания от явления ко всё более глубокой сущности.

Уметь иллюстрировать на примерах понятия: сущность и явление, возможность и действительность, переход количественных изменений в качественные.

Требования к усвоению материала.

Знать строение, свойства и практическое значение кетонов, оксикислот, двухосновны кислот, непредельных и ароматических ангидридов.

Знать особенности строения, свойства и применение представителей пластмасс, химических волокон: полистирол, фенолформальдегидные пластмассы, лавсан.

Уметь пользоваться сравнением, анализом и синтезом, систематизацией и обобщением: высказывать суждения о свойствах веществ на основе их строения и о строении веществ – по их свойствам.

Требования к усвоению химического языка.

Знать и уметь разъяснять смысл структурных и электронных формул органических веществ, геометрическую структуру полимеров.

Уметь составлять структурные формулы изучаемых органических веществ и обозначать распределение электронной плотности в молекулах, называть вещества по современной номенклатуре, составлять уравнения реакций, характеризующих свойства органических веществ, их генетическую связь.

Требования к выполнению химического эксперимента.

Знать правила работы с изученными органическими веществами и оборудованием, токсичность и пожарную опасность органических веществ.

Уметь собирать приборы и проводить разделение жидкостей, пользуясь воздушным холодильником: осуществлять синтез различных веществ (с учётом очистки и определения практического выхода) проводить функциональный анализ веществ, технических материалов пищевых продуктов.

Требования к решению расчётных задач.

Уметь находить молекулярную формулу газообразного органического вещества на основании его плотности по водороду или воздуху и массовой доли элементов, а также по массе, объёму или количеству веществ – продуктов его сгорания.

Уметь решать задачи повышенной трудности.

Сведения о контрольно-измерительных материалах

Контрольно-измерительные материалы составлены в соответствии с Федеральным компонентом государственного стандарта основного общего образования и требованиями к уровню подготовки учащихся по химии.

В рабочей программе запланированы следующие виды контроля: тесты, самостоятельная работа, контрольная работа.

Разнообразные по форме и содержанию задания нацелены на организацию самостоятельной работы и проверки знаний учащихся по курсу химии 10 класса. Их можно использовать на разных этапах урока по мере изучения логически завершенных фрагментов содержания учебного материала, при закреплении и повторении изученного, контроле знаний, а также для организации самостоятельной работы учащихся дома.

Комбинированные контрольные работы, предназначенные для текущего и итогового контроля по основным темам курса, содержат задания с выбором ответа и задания со свободной формой ответа. Формулировки вопросов тестов соответствуют формулировкам тестовых заданий ЕГЭ по химии.

Задания со свободной формой ответа могут быть использованы полностью или в виде отдельных заданий при составлении индивидуальных дидактических карточек для учащихся.

Контрольно-измерительные материалы Итоговый тестовый контроль

1. Сколько примерно литров воздуха расходуется при полном сгорании 0.5 л этана в пересчёте на нормальные условия:

2. Сколько всего изомеров может иметь соединение состава С₄H₈:

```
а) 2; б) 3; в) 4; г)5; д)6?
```

3. Какой из углеводородов с нормальной цепью будет иметь самую высокую температуру кипения:

```
а) бутан; б) пропан; в) гептан; г) пентан; д) гексан?
```

4. Какой заряд имеет радикал метил:

```
a) +1; 6) 0; B) -1; \Gamma) -2; \Pi) -3?
```

5. Сколько всего структурных изомеров может иметь соединение состава C₄H₉Cl:

```
а) 2; б) 3; в) 4; г) 5; д) 6?
```

6. Сколько всего изомеров бензола отвечают составу C₈H₁₀:

```
а) 2; б) 3; в) 4; г) 5; д) 6?
```

- 7. Какая из кислот при одинаковых условиях в водном растворе имеет наибольшую степень диссоциации:
- а) хлоруксусная; б) аминоуксусная; в) бромуксусная; г) уксусная; д) не знаю?
- 8. Сколько примерно фруктозы может образоваться при гидролизе 60 г сахарозы:

- а) 24 г; б) 31 г; в) 60 г; г) 84 г; д) не знаю?
- 9. Какое из нижеперечисленных веществ является наиболее токсичным при сжигании отходов полихлорвинила на воздухе:
- а) углекислый газ; б) оксид водорода; в) хлороводород; г) угарный газ; д) не знаю?
- 10. Сколько граммов брома может присоединиться к 2,1 л этилена, взятого при нормальных условиях:
- а) 5 г; б) 10 г; в) 15 г; г) 20 г; д) не знаю?
- 11. Сколько структурных изомеров может иметь дибромпропан:
- а) 2; б) 3; в) 4; г) 5; д) 6?
- 12. Какой объём ацетилена при н.у. образуется из 7 г технического карбида кальция, содержащего 18% примесей:
- а) 1 л; б) 2 л; в) 3 л; г) 4 л; д) 5 л?
- 13. Вычислите массовую долю выхода уксусного альдегида, если из 113 л ацетилена / н.у./ по реакции Кучерова было получено 200 г чистого продукта:
- а) 80%; б) 0.94; в) 70%; г) 0.11; д) 90%?
- а) 2-метил-4-этилпентан; б) 4-метил-2-этилпентан; в) 2,4-диметилгексан;
- г) 3,5-диметилгексан?
- 15. При хлорировании бутана преимущественно получаются следующие продукты реакции:
- а) 2-хлорбутан; б) 1-хлорбутан; в) 1,2-дихлорбутан; г) 2,3-дихлорбутан;
- д) 2,2-дихлорбутан?
- 16. На метилбутан подействовали хлором, на полученное вещество металлическим натрием, назовите продукт реакции, напишите его формулу:
- а) 2,2,4,4-тетраметилгексан; б) 3,3,4,4-тетраметилгексан; в) декан;
- г) 2,4-диметилоктан; д) 3,5-диметилоктан?
- 17. Какой этиленовый углеводород получается дегидратацией спирта-2-метилпентанол-3 назовите его:

- 18. К 1-бромпропану добавьте спиртовой раствор щёлочи, к продукту реакции присоедините бромоводород, затем обработайте новый продукт водным раствором щёлочи. Какое органическое вещество получится:
- а) пропанол-1; б) пропанол-2; в) пропен; г) пропин; д) пропандиол-1,2?
- 19. Напишите формулу и назовите продукт реакции «В», полученный по схеме:

$$CH_3\text{-}CH_2\text{-}CHBr\text{-}CH_3 \xrightarrow{\text{KOH}} A \xrightarrow{\text{«O», HOH}} \overrightarrow{B}$$

- а) бутандиол-1,2; б) 2-хлорбутан; в) 2,3-дихлорбутан; г) 1,4-дихлорбутан;
- д) 1,2-дихлорбутан?
- 20. Исходя из 2,2-дибромбутана, действием избытка спиртового раствора щёлочи получите углеводород и назовите его:
- а) бутен-1; б) бутен-2; в) бутин-1; г) бутин-2; д) бутадиен-1,3?
- 21. Какой качественной реакцией можно отличить пентин-1 от пентина-2:
- а) горением; б) бромной водой; в) окислением КМпО₄;
- г) аммиачным раствором оксида серебра; д) не знаю?
- 22. Среди органических веществ назовите негорючее соединение:
- а) бутан; б) стеариновая кислота; в) пропаналь; г) диэтиламин;
- д) тетрахлорметан?
- 23. Укажите неустойчивое, нестабильное соединение:
- а) циклопропан; б) пропан; в) 2-метилпропан; г) циклогексан; д) этаналь?
- а) между атомами углерода и кислорода /С=0 связь/;
- б) между первым и вторым углеродными атомами;
- в) между вторым и третьим углеродными атомами?
- 25. Каков тип гибридизации у второго атома углерода в диеновом углеводороде состава CH₂ =C=CH-CH₃:

- а) sp; б) sp 2 ; в) sp 3 ; г) не знаю?
- 26. В каком из спиртов наиболее подвижен атом водорода в гидроксогруппе:
- а) 2-метилпропанол; б) этанол; в) метанол; г) подвижность одинакова?
- 27. Какой тип гибридизации имеет второй атом углерода в изопрене:
- а) sp; б) sp 2 ; в) sp 3 ; г) не знаю?
- 28. У какого атома углерода будет преимущественно замещаться атом водорода в реакции пентана с хлором:
- а) у первого; б) у второго; в) у пятого; г) у пятого и первого; д) у всех одинаково?